

ENGINEERING CLEAN ENERGY SYSTEMS

- Strategy vs evolution
- Scenario development
- Management innovations
- A role for NASA

STRATEGIC GOALS

- Put a man on the moon in 10 years(... and safely return)
 - Kennedy's May 1961 Apollo goal

- An 83% reduction of CO₂ emissions below 2005 levels by 2050
 using systems that are reliable and cheap)
 - Obama's 2009 Copenhagen goal
 - Good end state performance definition
 - ♦ Big CO₂ emission reduction in next generation time frame
 - ♦ Consistent with a sustainable post fossil fuel economy
 - It is premature to say that this goal is too expensive or unachievable

CLASSIC STRATEGIC PLANNING

- 1. Set the purpose
 - The strategic goal
 - The end state
- Clarify alternative solutions, a factual analysis
 - Strategic scenario development
 - System tradeoffs
- 3. Choose a direction, a value judgments
 - Set specific goals
- 4. Develop plans to get there from here
 - Phased development, staged deployment
 - Interim milestones

IMPORTANCE OF A STRATEGIC GOAL

Spectrum of system design methods

Evolution

- No goal
- Decisions based on
 - Local optimization, rule
 - Natural selection
- ◆Examples
 - Ecosystems
 - Artificial life
 - Self organizing systems

Agile development

- Fuzzy goal (consumer products)
- Decision based on market feedback
- Advantage
 - Easy way to manage ill defined and rapidly changing requirements
 - Quick, immediate returns
- Disadvantage
 - Confusion, Inefficient, ugly, expensive systems (think Windows)
 - Big mistakes, dead ends, extinction
 - May never achieve the final goal

Rational planning

- Clear end state (strategic goal)
- Decisions are based on goal
- Advantage
 - Focus resources
 - Avoid big mistakes
 - Elegant, optimized systems
 - Structured processes simplifies the politics.
- Disadvantage
 - An integrator needs to coordinate, enforce good process and best practice
 - Planning takes discipline

Pavlak, A., Strategy vs. Evolution, American Scientist 98:6, Nov - Dec 2010, p. 448

EVOLUTION us STRATEGY - EXAMPLE

- National Research Council published America's Energy Future (AEF) in 2009
- The AEF was tasked to develop an evolutionary scenario based on "a projection of current economic, technology ... and policy parameters"
 - The AEF evolutionary scenario mixes legacy systems, changing technology and current policy resulting in confusion
 - No strategic goal
 - There is no "silver bullet," many ways to reduce emissions
 - We need a "balanced portfolio," there are many ways to reduce CO₂ emission today, some enduring, some not
 - Nuclear is viewed as unattractive (because it is discouraged by current policy)
- A strategic analysis leads to a different conclusion
 - Fewer feasible choices
 - Reveals some concepts to conflict with the goal

- ★ Evolution starts from where we are and attempts to move forward
- ★ Strategy starts from where we want to be, then develops a plan to get there from here

Strategy vs. Evolution, American Scientist 98:6, Nov - Dec 2010, p. 448

STRATEGIC SCENARIOS

- Simple architectural models (components & interfaces) of end state system configurations
 - Start with a blank sheet of paper and known technology
 - Ignore current policy and legacy system constraints
 - * Strategic scenarios are simpler than evolutionary scenarios
- Capture only enough detail to analyze and compare system cost/performance
- Provide a factual definition of the feasibility of various choices.
- Strategic scenarios are concluded by design reviews
- Strategic scenarios are followed by management decision milestones, policy, plans

REQUIREMENTS DECOMPOSITION

An 83% reduction of CO₂ emissions below 2005 levels by 2050

Data source: DOE/EIA

Pavlak, A., Strategy vs. Evolution, American Scientist 98:6, Nov - Dec 2010, p. 448

- Actual 2005 emissions divided into three categories
 - Electric power generation
 - Motor vehicle fuel
 - Everything else, includes difficult substitution
- Fuel use designated by patterns
 - Coal red hash
 - Oil blue cross hash
 - Natural gas green hash
- The 2050 goal (red bar) requires:
 - Zero carbon electric power system
 - Zero fossil fuel for motor vehicles

STRATEGIC ENERGY SCENARIOS

ELECTRIC POWER SCENARIOS

- Natural gas baseline
- Nuclear
- Wind
- Coal
- Solar PV
- Concentrated solar thermal
- Geothermal
- Stationary fuel cells
- Tides
- Ocean thermal gradient
- Hydro

ELECTRIC POWER COMPONENTS

- Electric power system operations & markets
- Smart grid
- Storage

MOTOR VEHICLE FUELS

- Batteries
- Fuel cells
- Ultra capacitors
- Bio & synthetic fuels

NUCLEAR SCENARIOS

- Traditional LWR, French electric power system
 - 90% carbon free today (80% nuclear, 10% hydro)
 - Took 37 years
- Small modular reactors
 - Lower cost, factory built, truck transportable, many variations
- Liquid fluoride thorium reactor (LFTR)
 - Not fissile, load following, well suited to commercial power
- Molten salt reactor (Gen 4)
- Fast Breeder reactors
 - * Reprocessed fuel, essentially sustainable
- Presidential Blue Ribbon Commission

Babcock & Wilcox 125 mW module

WIND SCENARIOS

- On demand system requirement conflicts with intermittency
 - Intermittent generators cannot stand alone
 - ◆ Cannot deliver reliable power on demand by themselves
 - Increases net load fluctuations
 - ◆ Conflicts with level load
 - Plugging wind into the system prevents the system from reaching low carbon
- Partition the system into subsystems
 - Intermittent generator + something else
 - ◆ Each subsystem meets system requirements for reliable, cheap, clean
 - Alternative partitioning?
- Scenarios are concluded with system design reviews
 - Reliability
 - Cost
 - Emissions

- Wind + fossil fuel
 - Cannot achieve zero carbon, must discard wind to achieve zero carbon
 - No empirical system level emission validation
 - Obstructs commitment to base load solutions
- Wind + storage
 - Primary barrier is cost of seasonal/annual fluctuations
 - Water desalinization
 - Water pumping & irrigation
- Wind + hydro
 - Denmark wind with Norway fjord pumped hydro works to a degree
 - Pacific Northwest issues
- Wind + geothermal

ARCHITECTURE PROBLEM

GOVERNANCE MODEL

- ✦ Roles are separate and distinct
- ♦ No one role dominates
- ✦ Healthy tension between roles

Pavlak, A., Architecture Governance: Management Structure for Creating Architecture, Architecture and Governance 3:4, November 2006, pp. 28,29.

- Executive President, State Governors
 - Articulate performance goals
 - System integrator
 - ◆ Coordination, integration, management structure
 - Enforces good process & best practices
 - Maintains system development plan with phases, design reviews, management decision milestones
 - Proposes policy options
- Engineer National laboratories, various experts, laboratories, manufacturers
 - Responsible for R&D, technical analysis
- Client Congress, State Legislatures
 - Represents general public, special interest groups
 - Responsible for value judgement
 - Chooses policy

MANAGING TECHNOLOGY CHANGE

"Why bother planning when everything is going to change."

nonsense

- Technology change is managed as risk using phased development
- Engineering development plans consist of a sequence of phases
- Phases are separated by design reviews and management decision milestones
 - Design reviews are a critical independent evaluation of fact
 - Management decision milestones are value decisions
- Systems are decomposed into a nested set of many such plans with interrelationships and dependencies
- Architect enforces discipline and provides development coordination

DODI 5000.2

DESIGN REVIEWS

- Purpose
 - Is progress consistent with requirements?
 - Clarify issues and problems to be resolved
 - Provides the factual basis for value choices
- Traditional format
 - Closed session, well defined client/contractor
 - Stating requirements, performance metrics
 - Developers present system progress and status
 - Cross examination by expert design review board
- An open format would encourage buy-in by multiple stakeholders
 - The number and diversity of stakeholders makes clean energy unique
 - Open format allows public to witness give and take, perhaps participate
 - Provides factual pushback against hype and spin
- Followed by client value choice (proceed, redirect, pause and re-evaluate, terminate)

SO MANY STAKEHOLDERS!

- One challenge is the number, diversity and innumeracy of stakeholders.
 - Energy affects everyone and everyone has an opinion.
- The interface between the customer and the contractor is always troublesome
 - Energy systems stakeholders are far more complex.
- Informed stakeholders simplify the politics. We need to experiment with novel open methods for engaging stakeholders in design reviews and management decisions.
 - Mechanisms to mitigate bias, push back against lobbyists and special interests
 - Large public works projects provides guidance.
 - Wilson bridge example

PUBLIC WORKS GUIDANCE

- Like energy systems, large public works projects involve consensus decision making by many diverse stakeholders
- The new Woodrow Wilson bridge (195 across the Potomac)
 - Engineers explored the full range of options: tunnels, high bridge, draw bridge (1 year), then
 - Value choice made through extensive interface with the public (local town hall meetings, briefings with local, state and federal politicians (3 years)

Woodrow Wilson Bridge

- Lesson for clean energy systems
 - The hard part is building a public consensus
 - Consensus building is simplified by clear and simple choices
 - ➤ Separate technology from value choices
 - ➤ Strategic scenarios
 - ➤ Open design reviews

THE REALLY BIG MISTAKES

- The really big mistakes are made on the first day (Eberhardt Richten)
 - Flash Gordon scenario
 - Expensive to reposition the house after the foundation is set
- Potential big mistakes in energy
 - Corn based ethanol
 - Renewable portfolio standards
 - Large scale wind
- Policy comes last
 - Clean energy can be stimulated by increasing the cost of carbon fuels or decreasing the cost of clean sources
 - First we need scenarios

CONCLUSION

- We have a good strategic goal
 - * 83% CO2 emission reduction below 2005 levels by 2050
 - Reliable, cheap, clean
- Strategic planning is the best management approach
 - Strategic goal drives decision making
 - Elegant systems, focus, avoid big mistakes
 - Next step strategic scenarios
- Scenarios provide system level estimates of cost/ performance
 - Reliable, cheap, clean is a system requirement
 - Think integrated subsystems for intermittent generators
- Phased development and staged deployment manages technology change
- Open design review clarifies fact and builds public confidence by pushing back against hype

Strategic vision

A ROLE FOR NASA

- Power systems engineering capability has atrophied since 1970's deregulation
 - Monopoly power systems departments are gone
 - Highly fragmented regulatory structure
- Electric power needs a system integrator responsible for reliable, clean and cheap
 - Manage system scenario development
 - Enforce best practices (e.g. open design reviews)
 - Assess management structure for power systems operations
- NASA has a unique skill set
 - Systems engineering & development
 - Technology neutral, not a developer
- International leadership?

